《交通信息智能预测理论与方法》在分析城市宏观交通流特点与短时交通系统动力学特性的基础上,阐述了可预测性分析和交通信息智能预测模型选择方法,建立了完整的道路交通信息智能化预测体系;重点论述了交通信息智能预测模型与方法,包括灰色预测方法、卡尔曼滤波方法、神经网络方法、支持向量机方法及组合预测方法等。同时,《交通信息智能预测理论与方法》也介绍了基于多Agent理论的智能预测系统设计方法。<br />交通信息智能预测,是指以历史的、现有的交通及相关因素的调查统计资料为依据,运用智能化的计算方法,对目标区域交通系统未来状况的测定。交通信息智能预测是预测学的一个分支,是现代交通规划学和智能交通系统(ITS)的重要组成部分。 <br />《交通信息智能预测理论与方法》取材新颖,体现了近年来交通信息智能预测研究方面的新理论与新进展,深入浅出地介绍了交通信息智能预测理论体系,并通过大量实例阐述了交通信息智能预测方法的应用。<br />《交通信息智能预测理论与方法》可作为交通工程专业、自动控制专业、系统工程等专业本科生、研究生以及相关学科领域研究人员的参考书。